Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Daqing Shi, ${ }^{\text {a }}{ }^{\text {* }}$ Juxian Wang, ${ }^{\text {a }}$ Chunling Shi, ${ }^{\text {a }}$ Liangce Rong, ${ }^{\text {a }}$ Xiangshan Wang ${ }^{\text {a }}$ and Hongwen Hu^{b}
${ }^{\text {a Department of Chemistry, Xuzhou Normal }}$ University, Xuzhou 221116, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: dqshi@263.net

Key indicators

Single-crystal X-ray study
$T=291 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.039$
$w R$ factor $=0.087$
Data-to-parameter ratio $=12.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Chloro-6-methyl-8,9-diphenylimidazo-[1,2-c]quinazoline

The title compound, $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{ClN}_{3}$, has been synthesized by the reaction of 4,5-diphenyl-2-(2-nitro-5-chlorophenyl)imidazole with triethyl ortho-acetate, induced by a low-valent titanium reagent. There are two independent molecules of similar conformation in the asymmetric unit. The dihedral angles between the pyrimidine and imidazole rings are 2.14 (2) and 2.71 (3) ${ }^{\circ}$.

Comment

Quinazolines are an important class of compounds, found in many naturally occurring products (e.g. hinckdentine A; Blackman et al., 1987; Billimmoria \& Cava, 1994) and employed as potent cytotoxic agents (Ibrahim et al., 1988; Riou et al., 1991; Brana et al., 1994; Helissey et al., 1994). Lowvalent titanium reagents have an exceedingly high ability to promote reductive coupling of carbonyl compounds and are attracting increasing interest in organic synthesis (McMurry, 1983; Shi et al., 2003). We report here the crystal structure of the title compound, (I), synthesized by the reaction of 4,5-diphenyl-2-(2-nitro-5-chlorophenyl)imidazole with triethyl ortho-acetate, induced by a low-valent titanium reagent.

(I)

In (I), there are two independent molecules of similar conformation in the asymmetric unit (Fig. 1 and Table 1). The dihedral angle between the pyrimidine ring ($\mathrm{N} 1 / \mathrm{C} 1 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{N} 2 /$ $\mathrm{C} 8)$ and the imidazole ring ($\mathrm{N} 2 / \mathrm{C} 7 / \mathrm{N} 3 / \mathrm{C} 10 / \mathrm{C} 9$) is $2.14(2)^{\circ}$, and that for the other independent molecule is $2.71(3)^{\circ}$, indicating that these two rings are nearly coplanar. $\mathrm{N} 1-\mathrm{C} 8$ and N3-C7 [1.292 (3)-1.311 (2) A $]$ are double bonds, while the other $\mathrm{C}-\mathrm{N}$ bond distances are in the range 1.387 (2)1.413 (2) \AA, corresponding to single bonds. The molecular packing is shown in Fig. 2, where the Cl and Cl^{\prime} atoms are arranged alternately along the a axis.

Experimental

The title compound, (I), was prepared by the reaction of 4,5 -di-phenyl-2-(2-nitro-5-chlorophenyl)imidazole with triethyl orthoacetate, induced by a low-valent titanium reagent $\left(\mathrm{TiCl}_{4} / \mathrm{Zn}\right)$. M.p. $452-453 \mathrm{~K}$. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Received 22 September 2003
Accepted 29 September 2003
Online 7 October 2003

Figure 1
The molecular structure of the asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

The crystal structure of (I) projected along the a axis.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{23} \mathrm{H}_{16} \mathrm{ClN}_{3} \\
& M_{r}=369.84 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=7.789(1) \AA \\
& b=17.777(2) \AA \\
& c=26.040(3) \AA \\
& \beta=94.70(1)^{\circ} \\
& V=3593.7(9) \AA^{3} \\
& Z=8
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}=1.367 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } \alpha \text { radiation } \\
& \text { Cell parameters from } 35 \\
& \text { reflections } \\
& \theta=2.9-14.9^{\circ} \\
& \mu=0.23 \mathrm{~mm}^{-1} \\
& T=291(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.54 \times 0.48 \times 0.34 \mathrm{~mm}
\end{aligned}
$$

Data collection
Siemens $P 4$ diffractometer ω scans
Absorption correction: ψ scan
(XSCANS; Siemens, 1994)
$T_{\text {min }}=0.882, T_{\text {max }}=0.926$ 7325 measured reflections 6330 independent reflections 3063 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.011 \\
& \theta_{\max }=25.0^{\circ} \\
& h=0 \rightarrow 9 \\
& k=0 \rightarrow 21 \\
& l=-30 \rightarrow 30 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \text { intensity decay: } 1.9 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.087$
$S=0.80$
6330 reflections
490 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0384 P)^{2}\right] \\
& \text { where } P==\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.14 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.23 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXTL } \\
& \text { Extinction coefficient: } 0.0035(2)
\end{aligned}
$$

Table 1
Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$.

N1-C8	1.292 (3)	$\mathrm{N} 1^{\prime}-\mathrm{C} 8^{\prime}$	1.290 (3)
N1-C1	1.391 (3)	$\mathrm{N} 1^{\prime}-\mathrm{Cl}^{\prime}$	1.388 (3)
N2-C7	1.394 (2)	$\mathrm{N} 2^{\prime}-\mathrm{C} 7^{\prime}$	1.390 (2)
N2-C8	1.409 (3)	$\mathrm{N} 2^{\prime}-\mathrm{C} 8^{\prime}$	1.404 (3)
N2-C9	1.413 (2)	$\mathrm{N} 2^{\prime}-\mathrm{C} 9^{\prime}$	1.408 (3)
N3-C7	1.311 (2)	$\mathrm{N} 3^{\prime}-\mathrm{C} 7^{\prime}$	1.307 (2)
N3-C10	1.387 (2)	$\mathrm{N} 3^{\prime}-\mathrm{C} 10^{\prime}$	1.383 (2)
C6-C7	1.429 (3)	$\mathrm{C} 6^{\prime}-\mathrm{C} 7^{\prime}$	1.435 (3)
C8-C23	1.485 (3)	C8 ${ }^{\prime}$ - $\mathrm{C} 23^{\prime}$	1.487 (3)
C9-C10	1.374 (3)	$\mathrm{C} 9^{\prime}-\mathrm{C} 10^{\prime}$	1.382 (3)
C8-N1-C1	120.0 (2)	N3-C7-N2	112.1 (2)
C7-N2-C8	120.07 (19)	N3-C7-C6	128.9 (2)
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 9$	105.96 (17)	N2-C7-C6	119.0 (2)
C8-N2-C9	133.89 (19)	N1-C8-N2	121.7 (2)
C7-N3-C10	105.64 (18)	N2-C9-C11	124.60 (19)
N1-C1-C6	122.8 (2)	C9-C10-N3	111.4 (2)
N1-C1-C2	118.5 (2)		
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-179.4 (2)	C9-N2-C8-N1	177.1 (2)
C5-C6-C7-N3	1.4 (4)	$\mathrm{C} 7-\mathrm{N} 3-\mathrm{C} 10-\mathrm{C} 17$	179.11 (18)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 8-\mathrm{N} 2$	-0.6 (3)	N2-C9-C11-C12	75.3 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 23$	-179.95 (19)	C9-C10-C17-C18	-178.0 (2)

H atoms were positioned geometrically and were treated as riding on their parent C atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-$ $0.97 \AA$; the $U_{\text {iso }}(\mathrm{H})$ values were set equal to $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997); program(s) used to solve structure: $S H E L X T L$; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL.

We thank the Foundation of the 'Supassing Project' of Jiangsu Province and the Natural Science Foundation of the Education Committee of Jiangsu Province (grant No. 03 KJB150136) for financial support.

References

Billimmoria, A. D. \& Cava, M. P. (1994). J. Org. Chem. 59, 6777-6782.
Blackman, A., Hambley, T. W., Picker, R., Taylor, W. C. \& Thirasana, N. (1987). Tetrahedron Lett. 28, 5561-5564.

Brana, M. F., Castellano, J. M., Keilhauer, G., Machuca, A., Martin, Y., Redondo, C., Schlick, E. \& Walker, N. (1994). Anti-Cancer Drugs Des. 9, 527-538.
Helissey, P., Cros, S. \& Giorgi-Renault, S. (1994). Anti-Cancer Drugs Des. 9, 51-57.
Ibrahim, E. S., Montgomerie, A. M., Sneddon, A. H., Proctor, G. R. \& Green, B. (1988). Eur. J. Med. Chem. 23, 183-188.

McMurry, J. E. (1983). Acc. Chem. Res. 16, 405-411.
Riou, J. F., Helissey, P., Grondard, L. \& Giorgi-Renault, S. (1991). Mol. Pharmacol. 40, 699-706.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Shi, D. Q., Rong, L. C., Wang, J. X., Zhuang, Q. Y., Wang, X. S. \& Hu, H. W. (2003). Tetrahedron Lett. 44, 3199-3201.

Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

